এ গতিপথ বৃত্তাকার, উপবৃত্তাকার, সরল রৈখিক বা আরো জটিল হতে পারে। ঘড়ির কাঁটার গতি, সূর্যের চারদিকে পৃথিবীর গতি, বাষ্প বা পেট্রোল ইঞ্জিনের সিলিন্ডারের মধ্যে পিস্টনের গতি পর্যাবৃত্ত গতি ।
কোনো অগ্রপশ্চাৎ পর্যাবৃত্ত গতিকে দোলন গতি বা স্পন্দন গতি বলে ।
উদাহরণ : স্পন্দন গতির উদাহরণ হচ্ছে সরল দোলকের গতি, কম্পনশীল সুরশলাকা ও গীটারের তারের গতি। কঠিন বস্তুতে পরমাণু স্পন্দিত হয়। বাতাসের মধ্য দিয়ে শব্দ তরঙ্গ সঞ্চালনের সময় বাতাসের অণুগুলো স্পন্দিত হয় ।
আমরা আগেই দেখেছি সরলরৈখিক গতির ক্ষেত্রে ত্বরণ মানে ও দিকে ধ্রুব থাকে, বৃত্তাকার গতির ক্ষেত্রে ত্বরণ (কেন্দ্রমুখী ত্বরণ) মানে ধ্রুব থাকলেও এর দিক পরিবর্তিত হয়। স্পন্দন গতির ক্ষেত্রে ত্বরণ পর্যায়বৃত্তভাবে মানে ও দিকে পরিবর্তিত হয়। স্পন্দন গতির ক্ষেত্রে ত্বরণ সরণের ওপর নির্ভর করে। ত্বরণ ও সরণের মানের মধ্যে সবচেয়ে সরল সম্পর্ক হতে পারে কোনো কণার ত্বরণ a, তার সরণ x এর সমানুপাতিক। এ জাতীয় সম্পর্ক যে স্পন্দন গতিতে বজায় থাকে তাকে বলা হয় সরল ছন্দিত স্পন্দন বা সরল দোলন গতি এবং একে নিম্নোক্তভাবে সংজ্ঞায়িত করা হয়।
সুতরাং সরল ছন্দিত স্পন্দনের ক্ষেত্রে ত্বরণ a এবং সরণ x এর মধ্যে সম্পর্ক হলো,
.. .. .. (8.1)
এই ধ্রুবক k কে বলা হয় বল ধ্রুবক।
যেহেতু বল ত্বরণের সমানুপাতিক, সুতরাং সরল দোলন গতির ক্ষেত্রে আমরা বলতে পারি বলও সরণের সমানুপাতিক,
এখানে ' বা k হচ্ছে ধনাত্মক ধ্রুবক। (8.1) এবং (82) সমীকরণে ঋণাত্মক চিহ্ন নির্দেশ করে যদিও সরণ বেশি হলে ত্বরণ ও বল বেশি হয় কিন্তু তাদের দিক সর্বদা সরণের দিকের বিপরীত দিকে অর্থাৎ সাম্যাবস্থানের দিকে। এ বল একটি প্রত্যায়নী বল। যে বল সরল দোলন গতির ক্ষেত্রে সর্বদা সাম্যাবস্থানের দিকে ক্রিয়া করে সাম্যাবস্থানের দিকে ফিরিয়ে আনে তাকে প্রত্যায়নী বল বলা হয় যেমন-স্প্রিং বল, স্থিতিস্থাপক বল ইত্যাদি।
উদাহরণ : সরল দোলন গতির কয়েকটি উদাহরণ হলো কম্পমান সুরশলাকার গতি, স্বল্প বিস্তারে কোনো সরল দোলকের গতি, কোনো স্প্রিং-এর এক প্রান্ত দৃঢ় অবস্থানে আটকে অপর প্রান্তে একটি ভারী বস্তু ঝুঁলিয়ে টেনে ছেড়ে দিলে তার গতি প্রভৃতি।
১। এটি একটি পর্যাবৃত্ত বল।
২। এটি একটি স্পন্দনশীল বল ।
৩। যেকোনো সময় বলের মান সাম্যাবস্থান থেকে সরণের মানের সমানুপাতিক ।
৪ । বল সর্বদা একটি নির্দিষ্ট বিন্দু অভিমুখী ।
পূর্ণ স্পন্দন : সরল দোলন গতির ক্ষেত্রে একটি সম্পূর্ণ অগ্র-পশ্চাৎ গতিকে পূর্ণ স্পন্দন বা দোলন বলে।
পর্যায়কাল: একটি পূর্ণ দোলন সম্পন্ন হতে যে সময় লাগে, তাকে পর্যায়কাল T বলে। কম্পাঙ্ক : একক সময়ে যতগুলো পূর্ণ দোলন হয় তাকে কম্পাঙ্ক f বলে।
বিস্তার : সরল দোলন গতিশীল কোনো কণা এর সাম্যাবস্থান বা মধ্যাবস্থান থেকে যেকোনো একদিকে যে সর্বোচ্চ দূরত্ব অতিক্রম করে তাকে তার বিস্তার বলে।
দশা : সরল দোলন গতিশীল কোনো কণার দশা বলতে ঐ কণার যেকোনো মুহূর্তে গতির সম্যক অবস্থা অর্থাৎ কণাটির সরণ, বেগ, ত্বরণ, বল ইত্যাদি বোঝায়।
পূর্ণ স্পন্দন : সরল দোলন গতির ক্ষেত্রে একটি সম্পূর্ণ অগ্র-পশ্চাৎ গতিকে পূর্ণ স্পন্দন বা দোলন বলে।
পর্যায়কাল: একটি পূর্ণ দোলন সম্পন্ন হতে যে সময় লাগে, তাকে পর্যায়কাল T বলে। কম্পাঙ্ক : একক সময়ে যতগুলো পূর্ণ দোলন হয় তাকে কম্পাঙ্ক f বলে।
বিস্তার : সরল দোলন গতিশীল কোনো কণা এর সাম্যাবস্থান বা মধ্যাবস্থান থেকে যেকোনো একদিকে যে সর্বোচ্চ দূরত্ব অতিক্রম করে তাকে তার বিস্তার বলে।
দশা : সরল দোলন গতিশীল কোনো কণার দশা বলতে ঐ কণার যেকোনো মুহূর্তে গতির সম্যক অবস্থা অর্থাৎ কণাটির সরণ, বেগ, ত্বরণ, বল ইত্যাদি বোঝায়।
সরল দোলন গতির সংজ্ঞা থেকে আমরা জানি, বল সরণের সমানুপাতিক এবং বিপরীতমুখী। কোনো কণার উপর ক্রিয়াশীল বল F এবং সরণ x হলে সরল দোলন গতির ক্ষেত্রে,
এ ধ্রুবক k কে বলা হয় বল ধ্রুবক। নিউটনের দ্বিতীয় সূত্র থেকে বস্তুর ভর m এবং ত্বরণ a হলে, F = ma
:- ma =- Kx
কিন্তু ত্বরণ
:-
…(8.3)
আমরা যদি 2লিখি, তাহলে এ সমীকরণ দাঁড়ায়,
.. .. (8.4)
এ সমীকরণে অন্তরক (derivative) সংশ্লিষ্ট, কাজেই এ সমীকরণটি একটি অন্তরক বা ব্যবকলনী সমীকরণ। এ সমীকরণ থেকে সরল দোলন গতি সম্পন্ন কোনো কণার সরণ x কীভাবে সময় এর উপর নির্ভর করে তা জানা যায়। কোনো কণার সরণ x কীভাবে সময়। এর উপর নির্ভর করে তা জানার অর্থই হচ্ছে কণাটির গতি সম্পর্কে জানা। যেহেতু (8.4) সমীকরণ সমাধান করলে সময়ের সাথে সরণের সম্পর্ক তথা গতি সম্পর্কে জানা যায়, তাই এ সমীকরণকে সরল দোলন গতির অন্তরক সমীকরণ বলা হয়। এ সমীকরণের দুটি উল্লেখযোগ্য সাধারণ সমাধান হচ্ছে
আরও দেখুন...